for a surface S: z=1-x^2-y^2 (z>=0),
calculate int(S) dS.
setting φ = x^2+y^2+z-1 = 0,
dS = |∇φ|dxdy
= root(4x^2+4y^2+1)
therefore,
int(D) root(4x^2+4y^2+1) dxdy
(D={(x,y)|x^2+y^2<=1})
using x = rcosθ, y = rsinθ,
int_(0)^(2pi) dθ int_0^1 root(1+4r^2) r dr
= 1/6 (5 sqrt(5)-1) pi~5.33
Write a comment